
Log4j An Executive Guide to

Vulnerabilities

By: Gaurav Banga, Founder and CEO Balbix

For CEOs, CFO, and other CXOs

2An Executive Guide to Log4j

If you are the CEO, CFO or CXO of

a major corporation, you are probably

aware of Log4j, and perhaps perplexed by the

unprecedented impact it has had on your infosec

and IT teams. You might be wondering how Log4j is

different from vanilla cybersecurity issues. Perhaps

you are waiting for your CISO to provide root cause

analysis, lessons learnt and recommendations for

change in how your organization manages cyber

risk. A board member or two might

be pestering you for details...

Here is a short writeup that

might be helpful.

3An Executive Guide to Log4j

The Log4j vulnerability has been labeled by some
as “the worst software vulnerability ever”. This
is because Log4j is everywhere. It is a part of the
Apache/Java ecosystem used to program almost
everything that is connected to the Internet. Your
mission critical applications probably use Log4j.
Your vendors and supply chain use Log4j. Most of
your cybersecurity vendors also use Log4j...

$500M

$250M

Cyber Risk

Figure 1: Cyber risk change due to Log4j

Aug 2021	 Oct 2021	 Dec 2021

For Those Who Came in Late, What Is Log4j?
In summary, attackers have found a new way
to get inside. When bad guys walk up and see a
locked digital door into your enterprise, all they
have to do is something simple, like: “Hey Siri,
abracadabra, open the door”—and it opens.

My good friend, Mahendra Ramsinghani, explains
this best: Software developers like to record
everything so that they can review and debug their
work. Recording in the developer world is called
logging, and the “camera” they use for recording/
logging events is called Log4j. Log4j is prepackaged
open-source code that is incorporated in software
applications, like a Lego block. But this camera has a
glitch and can magically become a tunnel via which
attackers can get in and control the house.

The Log4j vulnerability has received a lot of press
and has been labelled by some as “the worst
software vulnerability ever”. The reason for this
is because Log4j is everywhere. It is a part of the
Apache/Java ecosystem used to program almost
everything that is connected to the Internet. Your
mission critical applications probably use Log4j.
Your vendors and supply chain use Log4j. Most of
your cybersecurity vendors also use Log4j! And, as
you will see below, for several reasons it has been
quite tough to mitigate Log4j.

Depending on the size of your business, your
cyber risk from Log4j is likely to be 10s or 100s of
millions of $s (or euros, pounds, etc.). If you were
doing ok on Dec 8, 2021, in terms of cyber risk,
you may not be doing ok anymore (Figure 1).

https://www.linkedin.com/pulse/log4j-security-memo-ceo-mahendra-ramsinghani/?trackingId=lPqfAnSSSxWWW65YvATefg%3D%3D

4An Executive Guide to Log4j

Mitigating and Remediating Log4j
The typical methodology that infosec teams follow when dealing with a vulnerability like Log4j is outlined in Figure 2.

First, your infosec team must identify enterprise assets that are affected. This involves running authenticated
and unauthenticated scans. In some cases, static and dynamic analysis is also needed. Depending on the
maturity of your infosec program, this identification step could take a few hours to several weeks.

After identification, the vulnerability must be remediated (or mitigated) while simultaneously looking for
systems that might have already been exploited.

If you get lucky, you will not have any affected systems because you do not use the specific vulnerable
module. If you are vulnerable, this mitigation process can take weeks. Obviously, your objective is to
remediate or mitigate the vulnerability quickly—before any attacker can weaponize it.

Figure 2: Response playbook for vulnerabilities like Log4j

5An Executive Guide to Log4j

Challenges With Log4j
Log4j has been the most difficult security issue that the cybersecurity industry has worked on in a long time.
Some of the challenges that infosec professionals have encountered are summarized below.

1. Finding Nemo

Your infosec team simply did not have (and likely
still does not have) an easy way of finding out
what applications were vulnerable to Log4j. The
situation is like someone warning your CISO: 50%
of your apps are on fire, but I cannot say which 50%.
You go figure.

Active scanning, which is the foundation of
vulnerability assessment, was not very useful for
Log4j. Traditional vulnerability assessment tools
do not have a comprehensive (or even close to
complete) list of application versions that are
vulnerable. This is primarily due to the embedded
library nature of Log4j – it is part of thousands of
applications without being explicitly listed in the
registry of installed applications on a system.
See Figure 3.

Many custom applications that utilize Log4j are
also vulnerable. Vulnerable custom apps are
typically not identified by standard vulnerability
assessment tools. Usually this does not matter as
most publicly disclosed software vulnerabilities
only affect standard applications. In this specific
case, being blind to custom apps is not acceptable
since Log4j is embedded in so many of them.
Infosec professionals are being forced to use deep
endpoint scans, dynamic run-time analysis and
static analysis combined with complex data
correlation to find all vulnerable systems. This will
take weeks!

One point to note: many organizations are even
worse off than described above. They do not even
have an accurate, up-to-date inventory of their
digital assets, so obviously don’t know where to
look for Log4j.

Figure 3: Application versions vulnerable to Log4j

All Application Versions

Vulnerable App Versions

Initially Disclosed Set of
Vulnerable App Versions

6An Executive Guide to Log4j

2. Too many vulnerabilities

Due to the sheer number of systems and applications
impacted by Log4j, mitigation and remediation
activities need to be sharply prioritized based
on risk. Unfortunately, many organizations do
not have a good way to quantify the cyber risk
of vulnerable assets or workloads. They cannot
differentiate between highly exposed assets
vs well-protected assets or critically important
assets vs less important ones, and therefore
cannot prioritize their efforts.

In the case of Log4j, many of your 3rd party SaaS
vendors (including cybersecurity tool vendors)
have also reported vulnerabilities in their systems and
tools, raising high priority work for your infosec
team to an unprecedented level, reviewing,
quantifying, mitigating and tracking cyber risk.

3. Triple whammy

If this was not bad enough, multiple Log4j
vulnerabilities were discovered in the days following
the initial disclosure, with 3 new patches released
in back-to-back fashion. Log4j 1.x and 2.x have
different issues and upgrading to the latest version
2.17.0 is not always possible, necessitating the use
of other types of mitigations.

These dynamics have tripled the work that your
internal teams and your vendors had to do, and your
mitigation processes are likely severely backlogged.

Figure 4 shows a mind map of Log4j related
thinking that your infosec teams are working with.
(Thanks to Loïc Castel for sharing this.)

Figure 4: Mind map—Am I vulnerable to Log4shell?

Net, net, you are looking at weeks (if not months) of work in mitigating Log4j. During this time, your
organization will stay at a very high state of cyber risk. Ransomware, operational integrity, theft of
customer data or intellectual property are all at high likelihood of happening.

https://www.linkedin.com/in/loicc/

7An Executive Guide to Log4j

Log4j is a Data
Science Problem
Let’s step back and take a data centric look at Log4j
(and issues like Log4j) and the challenges outlined
above. Let’s assume that our goal is to mitigate the
risk from issues such as Log4j as quickly as possible,
in hours and days instead of the current weeks and
months. We are looking at gathering and making
decisions on large amounts of cybersecurity telemetry
data—thousands of application versions across tens
or even hundreds of thousands of assets.

From a data perspective, the steps to triage Log4j can
be described as follows.

8An Executive Guide to Log4j

Block D in Figure 5 is very important for vulnerabilities like Log4j where the vulnerable
module is embedded in an application and has no direct footprint in the installed software
list. Without Block D, you will also not be able to discover your vulnerable custom apps—
this information is never present in Block A. As mentioned earlier, traditional vulnerability
assessment tools do not provide this information.

Block B represents your software inventory. Individual tools such as ServiceNow, Tanium,
Armis, Qualys (or other vuln assessment), cloud security posture tools, etc. each contain a
slice of this information and you need to unify these data sets. If you don’t have both Block B
and D implemented for your security program, you don’t have your software bill-of-materials
(S-BOM). Without an accurate S-BOM, you will struggle, and dealing with issues like Log4j
will be time consuming and painful.

Block E is also a useful source for your S-BOM, but not always practical in a war time situation
where you need to quickly find and mitigate risk to production software deployed on
thousands of endpoints.

Figure 5: Quickly building a list of application versions vulnerable to Log4j

Map from vulnerable Log4j version numbers to application versions that have vulnerable
Log4j modules.

A typical initial disclosure of a software vulnerability contains information about vulnerable
version numbers, and hashes for vulnerable files. In the case of Log4j, the initial disclosure
indicated that Log4j v 2.x up to 2.14.0 were vulnerable, with a recommendation to update to
2.15.0. The severity of the vulnerability was flagged as 10 (which is the maximum level).

In the case of Log4j, this disclosure did not cover many impacted apps—e.g., standard apps
and custom apps that embedded Log4j. Therefore, every organization needed to build up its
own list of vulnerable applications. This is shown in Figure 5.

STEP

1

A B C D E

9An Executive Guide to Log4j

Next, we need to map to a list of assets and workloads that use these vulnerable application
versions. This requires you to have an up-to-date asset inventory unifying data from all your
different IT and cybersecurity tools. If you don’t have this capability, you probably don’t have
an accurate S-BOM (Block #2 in Figure 5) either. When Log4j type issues come along, you will
need to deal with multiple, sometimes conflicting inventory sources at a time when you can
least afford to.

Once we have a list of vulnerable assets, we need to quantify the risk for each impacted
asset and workload by considering vulnerability severity, asset exposure, threat level of the
vulnerability, any compensating security controls and the business criticality of the asset/
workload. This is a crucial calculation since you need to know which of your assets need
immediate attention vs those that can wait a day or so.

Following risk quantification, a prioritized list of assets needing vulnerability mitigation must
be dispatched to various risk owners in your organization with a directive to mitigate risk from
the new vulnerabilities to acceptable levels. To be ready for this, you need to maintain an up-
to-date mapping of assets to risk owners, and workloads to risk owners. You will also need to
provide your risk owners with best practices around mitigation options—including the context
that will let them decide when to remediate and when to utilize some other mitigation.

You will need capabilities around tracking, analytics and reporting that will enable you to
measure risk burn down as it happens (or not) and communicate with all stakeholders.

Finally, you would want your 3rd party SaaS vendors to follow a systematic process like the one
outlined above and share quantitative reports with you during times like this.

STEP

2

STEP

3

STEP

4

STEP

5

STEP

6

10An Executive Guide to Log4j

Step 1-6 outlined above are the elements of cybersecurity posture automation. Figure 6 shows this as a
data computation.

As you can see from the sizes of the data sets involved, this is not an easy calculation. In the Fortune 500, the
sum of these data sets exceeds 100s of terabytes. If you want this computation to happen on a real-time
and continuous basis, you will need an appropriate data platform. You need AI/ML models for dealing with
incomplete, inconsistent, sometimes contradictory data across 100s of dimensions. Also, if you miss rows
(or columns) in the various tables involved, you will have gaps in your visibility and have weak areas of your
cybersecurity posture.

Figure 6: Data view of vulnerability mitigation

11An Executive Guide to Log4j

Invest in Cybersecurity Posture Automation
Hopefully, with the Log4j saga, it is evident to you that your organization needs to invest in a cybersecurity
posture automation platform, such as Balbix. Some of your organizations might be trying to build this
capability in-house. Log4j is a good test of how well that system performs.

The Balbix platform provides unified asset Inventory, continuous vulnerability analysis and prioritization,
and cyber risk quantification while supporting the dispatch, mitigation and verification of vulnerabilities. In
essence, Balbix enables you to do the calculations of Figure 5 and Figure 6, with the mind map of Figure 4,
implemented and automated in software.

At the time of writing, Balbix has helped our customers identify over 25,000 application versions vulnerable
to Log4j including 1000s of custom apps. For each identified application version, we have quantified cyber
risk and prioritized the app while providing auxiliary information that is key to mitigating or remediating the
vulnerability. We have saved our customers tens of 1000s of hours trying to do the calculations of Figure 6 by
hand. For our customers, the Mind map of Figure 4 is maximally automated as shown in Figure 7.

Figure 7: Systematically mitigating Log4j CVEs

12An Executive Guide to Log4j

Figure 8 is a view of the Balbix dashboard that a typical customer sees.

A Log4j-type vulnerability will happen again. If you can consider cybersecurity posture and risk management
as a data science problem, and you adopt an approach as outlined above, you’ll mitigate cyber risk quickly and
be ok. Otherwise, mitigating such issues will continue to ruin the day, or month, for you and your team (Figure 9).

Figure 8: Sample Balbix dashboard for Log4j

Figure 9: Cyber risk levels with speed of vulnerability mitigation

Traditional Approach

$500M

$250M

Cyber Risk

SEP 2021	 Nov 2021	 Jan 2022

With Cybersecurity Posture Automation

$500M

$250M

Cyber Risk

SEP 2021	 Nov 2021	 Jan 2022

LEARN MORE

https://www.balbix.com/

